Introduction to Effectus Theory

TACL＇17，Prague
Bart Jacobs
bart＠cs．ru．nl
26 June 2017

Outline

Background
A crash course on effect algebras and effect modules
Effectuses
Basic results in effectus theory
Effectuses for probability and classical computation
Assert maps for sequential conjunction and conditioning
Quotients and comprehension
Tool support for effectus probability
Conclusions

| Page 2 of 39 Jacobs 26 June 2017 | Effectus Theory | iCIS｜Digital Security
 Radboud University |
| :--- | :--- | :--- | :--- |

About this talk

－Overview of quantum logic research at Nijmegen
－Performed within context of ERC Advanced Grant Quantum Logic，
Computation，and Security
－Running period： 1 May 2013－1 May 2018
－Focus on categorical axiomatisation of the quantum world
－esp．differences／similarties with probabilistic and classical computing
－Key notion is effectus，a special kind of category（see later）

Basic results in effectus theory

Tool support for effectus probability

Conclusions

Group picture

Page 4 of 39 Jacobs 26 June 2017 Effectus Theory

From Boolean to intuitionistic \& quantum logic
both logic \& probability,
via indexed categories
via indexed categories

Effect Algebras \&

 Effect Modulesallow partial $\vee{ }^{\wedge}$
 keep double negatio

drop double negation keep distributivity

Example (without knowing yet what an effectus is)

The opposite $\mathbf{R n g}{ }^{\text {op }}$ of the category of rings (with unit) is an effectus, with:

$$
\xlongequal[\text { idempotent } e \in R, \text { so } e^{2}=e]{\stackrel{R \xrightarrow{\text { predicate }} 1+1}{\xlongequal[Z]{\longrightarrow} \longrightarrow \mathbb{Z} \longrightarrow R}} \quad \begin{aligned}
& \text { in Rng }{ }^{\text {op }} \\
& \text { in Rng }
\end{aligned}
$$

Hence the predicates on $R \in \mathbf{R n g}^{\text {op }}$ are its idempotents

- These idempotents $e \in R$ form an effect algebra, with:

$$
\text { truth } 1 \text { falsum } 0 \quad \text { orthocomplement } e^{\perp}=1-
$$

$$
\text { Additionally there is a partial sum } e \boxtimes d=e+d \text { if } e d=0=d e .
$$

- If R is commutative, then the idempotents form a Boolean algebra! (this case is well-known/studied, eg. in sheaf theory for commutative rings)

Origin of＇effectus＇

Where we are，so far

New Directions paper

－B．Jacobs，New Directions in Categorical Logic，for Classical， Probabilistic and Quantum Logic，LMCS 11（3）， 2015
－Introduces four successive assumptions（and elaborates them）

Intro paper

－Cho，Jacobs，Westerbaan，Westerbaan，Introduction to Effectus Theory，2015，arxiv．org／abs／1512．05813，150p．

Several other papers by ERC team members，eg．

－Kenta Cho，on equivalence between＇total＇and＇partial＇description
－Robin Adams，on＂effect＂logic \＆type theory
－Bas \＆Bram Westerbaan，on von Neumann algebra model

Background

A crash course on effect algebras and effect modules

Effectuses

Basic results in effectus theory

Tool support for effectus probability

Conclusions

Effect algebras，definition

Effect algebras axiomatise the unit interval $[0,1]$ with its（partial！） addition + and＂negation＂$x^{\perp}=1-x$ ．

Definition

A Partial Commutative Monoid（PCM）consists of a set M with zero $0 \in M$ and partial operation $\boxtimes: M \times M \rightarrow M$ ，which is suitably commutative and associative．
One writes $x \perp y$ if $x \oslash y$ is defined．

Definition

An effect algebra is a PCM in which each element x has a unique ＇orthosuplement＇x^{\perp} with $x \otimes x^{\perp}=1\left(=0^{\perp}\right)$
Additionally，$x \perp 1 \Rightarrow x=0$ must hold．

Effect algebras，observations

－There is then a partial order，via $x \leq y$ iff $y=x \boxtimes z$ ，for some z
－Each Boolean algebra is an effect algebra，with：

$$
x \perp y \text { iff } x \wedge y=0, \quad \text { and then } \quad x \boxtimes y=x \vee y
$$

－In fact，each orthomodular lattice is an effect algebra（in the same way）
－Frequently occurring form：unit intervals：

$$
[0,1]_{G}=\{x \in G \mid 0 \leq x \leq 1\}
$$

in an ordered Abelian group with order unit $1 \in G$ ．
－$x^{\perp}=1-x$
－$x \perp y$ iff $x+y \leq 1$ ，and in that case $x \boxtimes y=x+y$ ．

Definition

A homomorphism of effect algebras $f: X \rightarrow Y$ satisfies:

- $f(1)=1$
- if $x \perp x^{\prime}$ then both $f(x) \perp f\left(x^{\prime}\right)$ and $f\left(x \otimes x^{\prime}\right)=f(x) \otimes f\left(x^{\prime}\right)$.

This yields a category EA of effect algebras.

Example:

- A probability measure yields a map $\Sigma_{X} \rightarrow[0,1]$ in EA
- Recall the indicator (characteristic) function $\mathbf{1}_{U}: X \rightarrow[0,1]$, for a subset $U \subseteq X$
- It gives a map of effect algebras:

$$
\mathcal{P}(X) \xrightarrow{\mathbf{1}_{(-)}}[0,1]^{X}
$$

Effect modules

Effect modules are effect algebras with a scalar multiplication, with scalars not from \mathbb{R} or \mathbb{C}, but from $[0,1]$.
(Or more generally from an "effect monoid", ie. effect algebra with multiplication)

Definition

An effect module M is a effect algebra with an action $[0,1] \times M \rightarrow M$ that is a "bihomomorphism"

A map of effect modules is a map of effect algebras that commutes with scalar multiplication.
We get a category EMod \hookrightarrow EA.

Naturality of partial sums/disjunctions in logic
George Boole in 1854 thought of disjunction as a partial operation

"Now those laws have been determined from the study of instances, in all of which it has been a necessary condition, that the classes or things added together in thought should be mutually exclusive. The expression $x+y$ seems indeed uninterpretable, unless it be assumed that the things represented by x and the things represented by y are entirely separate; that they embrace no individuals in common." (p.66)

```
Page 12 of 39 Jacobs 26 June 2017 Effectus Theory
```

CIS | Digital Security Radboud University

Effect modules, main examples

Probabilistic examples

- Fuzzy predicates $[0,1]^{X}$ on a set X, with scalar multiplication $r \cdot p \stackrel{\text { def }}{=} x \mapsto r \cdot p(x)$
- Measurable predicates $\operatorname{Hom}(X,[0,1])$, for a measurable space X with the same scalar multiplication
- Continuous predicates $\operatorname{Hom}(X,[0,1])$, for a topological space X

Quantum examples

- Effects $\mathcal{E}(H)$ on a Hilbert space: operators $A: H \rightarrow H$ satisfying $0 \leq A \leq I$, with scalar multiplication $(r, A) \mapsto r A$.
- Effects in a C^{*} / W^{*}-algebra A : positive elements below the unit

$$
[0,1]_{A}=\{a \in A \mid 0 \leq a \leq 1\} .
$$

This one covers the previous illustrations.

Basic adjunction, between effects and states
Theorem By "homming into $[0,1]$ " one gets an adjunction:

$$
\text { EMod }^{\mathrm{op}} \underset{\operatorname{Hom}(-,[0,1])}{\frac{\operatorname{Hom}(-,[0,1])}{\rightleftarrows}} \text { Conv }
$$

This adjunction restricts to an equivalence of categories between:

- Banach effect modules, which have a complete norm
(or equivalently, complete order unit spaces)
- convex compact Hausdorff spaces

This is called Kadison duality

Where we are, so far

Background

A crash course on effect algebras and effect modules

Effectuses

Basic results in effectus theory

Tool support for effectus probability

Conclusions

Internal logic

effectus	meaning	
objects X	types	
arrows $X \xrightarrow{f} Y$	programs	
1 (final object)	singleton/unit type	
$1 \xrightarrow{\omega} X$	state	
$X \xrightarrow{p} 1+1$	predicate	
$1 \xrightarrow[\omega \neq p]{\omega} X \xrightarrow{p} 1+1$	validity $\omega \models p$	scalar
$1 \rightarrow 1+1$	state transformation	$f_{*}(\omega) \models=q$ $=$ $\omega \models f^{*}(q)$
$f_{*}(\omega)=f \circ \omega$	predicate transformation	
$f^{*}(q)=q \circ f$		

Discrete probability example
Examples of states and predicates in an effectus

- Claim: $\mathcal{K}(\mathcal{D})$ is an effectus!
- Question: What are the predicates and states?
- Predicates are maps $p: X \rightarrow 1+1=2$ in $\mathcal{K} \ell(\mathcal{D})$
- hence they are functions $p: X \rightarrow \mathcal{D}(2) \cong[0,1]$
- predicates on X in $\mathcal{K} \ell(\mathcal{D})$ are thus fuzzy: elements of $[0,1]^{X}$
- States are maps $\omega: 1 \rightarrow X$ in $\mathcal{K \ell}(\mathcal{D})$
- hence functions $1 \rightarrow \mathcal{D}(X)$, or elements of $\mathcal{D}(X)$
- and so discrete probability distributions on X
- Validity $\omega \models p$ is Kleisli composition $p \circ \omega: 1 \rightarrow 1+1$
- the outcome is a probability in $\mathcal{D}(2) \cong[0,1]$
- it is given by the expected value $\sum_{x} \omega(x) \cdot p(x)$

Effect structure on predicates $X \rightarrow 1+1$

- We get some logical structure for free:
$1=\left(X \xrightarrow{\kappa_{1} \circ!} 1+1\right) \quad 0=\left(X \xrightarrow{\kappa_{2}!!} 1+1\right) \quad p^{\perp}=\left(X \xrightarrow{p} 1+1 \xrightarrow{\left[\kappa_{2}, \kappa_{1}\right]} 1+1\right)$
Then $p^{\perp \perp}=p, 0^{\perp}=1,1^{\perp}=0$.
- Define $p \perp q$, for $p, q: X \rightarrow 1+1$ if there is a bound b in:

In that case put $p \otimes q=(\nabla+\mathrm{id}) \circ b: X \rightarrow 1+1$.

- Predicates $1 \rightarrow 1+1$ on 1 will be called scalars
- they carry a monoid structure $p \cdot q=\left[p, \kappa_{2}\right] \circ q$
- it is commutative in presence of distributive tensors

General picture: "state-and-effect triangles"

Heisenberg

Schrödinger

- The traditional distinction in program semantics between predicate transformers and state transformers also exists in the quantum world
- It corresponds to the different approaches of Heisenberg (matrix mechanics) and Schrödinger (wave equation, for pure state changes)

```
l}\begin{array}{l}{\mathrm{ Page 22 of 39 Jacobs 26 June 2017 Effectus Theory}}\\{\mathrm{ Effectuses }}
```


Where we are, so far

Background

A crash course on effect algebras and effect modules

Effectuses

Basic results in effectus theory
Effectuses for probability and classical computation
Assert maps for sequential conjunction and conditioning
Quotients and comprehension
Tool support for effectus probability

Defining these subclasses, I

Definition

A map $f: X \rightarrow X+1$ is called side-effect free if $f \leq$ id, where:

- id $=\kappa_{1}: X \rightarrow X+1$ is the Kleisi/partial identity map
- \leq is an 'obvious' order on partial maps, defined as for predicates

Note: we can always turn a partial map into a predicate:

$$
(X \xrightarrow{f} X+1) \longmapsto(X \xrightarrow{f} X+1 \xrightarrow{!+\mathrm{id}} 1+1)
$$

- Often, one can also go the other way around: from predicates to partial endomaps
- This inverse is called assert, written as asst_{p} for predicate p
- Sometimes this assert map is even side-effect free.

Defining these subclasses, II

Definition

The effectus B is called commutative if
there are side-effect free inverses asrt_{p} for "partial-map-to-predicate"

- these assert maps commute: $\operatorname{asrt}_{p} \circ \operatorname{asrt}_{q}=\operatorname{asrt}_{q} \circ \operatorname{asrt}_{p}$

An effectus is Boolean if it is commutative and assert maps are dempotent: $\operatorname{asrt}_{p} \circ \operatorname{asrt}_{p}=\operatorname{asrt}_{p}$.
\qquad

Assert maps for sequential conjunction ('andthen')

- For two predicates $p, q: X \rightarrow 1+1$ define sequential conjunction:

$$
p \& q:=\left(X \xrightarrow{\text { asrt }_{p}} X+1 \xrightarrow{\left[q, \kappa_{2}\right]} 1+1\right)
$$

- This $p \& q$ incorporates the side-effect of p, via its assert map
- indeed, \& is non-commutative in general, in the quantum case
- but it is commutative in commutative effectuses (probabilistic case)
- More concretely
- for $p, q \in[0,1]^{X}$ we have $(p \& q)(x)=p(x) \cdot q(x)$
- for $p, q \in \mathcal{B}(\mathscr{H})$, we use $p \& q=\sqrt{p} q \sqrt{p}$

Theorem

- In a commutative effectus, $\operatorname{Pred}(X)$ is a commutative effect monoid
- In a Boolean effectus, $\operatorname{Pred}(X)$ is a Boolean algebra, functorially:

$$
\mathbf{B} \xrightarrow{\text { Pred }} \mathbf{B A}^{o p}
$$

Theorem

Boolean effectuses 'with comprehension' are the same as extensive categories

An extensive category has 'well-behaved' coproducts: they are disjoint and universal.

Assert maps for conditioning of states

- Assert maps are also useful for conditioning of states
- conditioning is also called (Bayesian) state update/revision
- a uniform description can be given in an effectus
- it requires normalisation, of partial states to proper states
- Let $\omega: 1 \rightarrow X$ be state, and $p: X \rightarrow 1+1$ a predicate
- we get a partial state by composition:

$$
1 \xrightarrow{\omega} X \xrightarrow{\text { asrt }_{p}} X+1
$$

- write $\left.\omega\right|_{p}: 1 \rightarrow X$ for its normalisation; it exits if $\omega \models p \neq 0$
- Read $\left.\omega\right|_{p}$ as: ω, given p
- Once prove the conditional probability rule:

$$
\left.\omega\right|_{p} \models q=\frac{\omega \models p \& q}{\omega \models p}
$$

About quotients and comprehension

－Familiar picture in categorical logic：

$$
\text { truth } \dashv \text { comprehension }
$$

－Quotients X / R defined for relations $R \subseteq X \times X$ give：

$$
\text { quotients } \dashv \text { equality }
$$

－In linear algebra quotients A / S are typically defined for subspaces
$S \subseteq A$ ．Then：

$$
\text { quotients } \dashv \text { falsity }
$$

Recall that truth and falsity predicates form right and left adjoints to a fibration（functor），giving a quotient－comprehension chain：
quotients $\quad \dashv$ falsity $\quad \dashv$ fibration $\quad \dashv$ truth $\quad \dashv$ comprehension

```
Page 29 of 39 Jacobs 26 June 2017 Effectus Theory
```


Example chains

－For vector spaces：
－For Hilbert spaces：

－Each Abelian category A has：

Quotient－comprehension chains and measurement
－It turns out that there are close connections between：
－quotient－comprehension chains in an effectus
－measurement，via＂side－effectful＂assert maps
－Canonical form in von Neumann algebras： $\operatorname{asrt}_{p}(x)=\sqrt{p} \cdot x \cdot \sqrt{p}$
－In all our examples we can factor assert（as partial map）：

$$
X \underset{\xi_{p \perp}}{\longrightarrow} \underset{X / p^{\perp} \cong\{X \mid\lceil p\rceil\}^{\nearrow}}{\text { asst }_{p}} X
$$

This is formalised in a telos：
－an effectus with a square root axiom
－it axiomatises von Neumann algebras－and quantum theory
－details are still forthcoming

Where we are，so far

Background

A crash course on effect algebras and effect modules

Effectuses

Basic results in effectus theory
Tool support for effectus probability

Conclusions

Capture－recapture challenge

Imagine we wish to estimate the number of fish in a pond．
（1）we catch 20 fish，mark them，and throw them all back
（2）we wait a bit，catch 25 ，and find 5 are marked．
How many fish are in the pond？

Assumptions for the mathematical model

－the range of fish is［25，300］，as continuous interval
－the prior distribution is uniform
－in（2），each observed fish is thrown back before another is caught
－thus we can use a binomial with $N=25$ ，and probability $p=\frac{20}{x}$ ， where $x \in[20,300]$ is the number of fish

EfProb tool support，see efprob．cs．ru．nl
－EfProb is abbreviation of Effectus Probability
－developed jointly with Kenta Cho
－It is an embedded language of Python，for probabilistic calculations
－it yields channel－based probability theory
－abstractly：a channel is a map in an effectus
－concretely：conditional probability，stochastic matrix，Markov kernel，．．
－EfProb uses：states，predicates，random variables，validity， conditioning，state－and predicate－transformation，disintegration ．．．
－uniform terminology \＆notation for discrete／continuous／quantum
－think： $\mathcal{K} \ell(\mathcal{D}) / \mathcal{K} \ell(\mathcal{G}) / \mathbf{v N A}^{\mathrm{op}}$
－Extensive manual is available，with many，many examples
－Bayesian networks，hidden Markov models，quantum protocols，．．．

Fish example in EfProb

Define domains（sample spaces）and priors：

```
>> fish_dom = R(25,300)
>>> catch_dom = range(0,26)
>>> prior = uniform_state(fish_dom)
```

Next，a channel $[25,300] \rightarrow \mathcal{D}(\{0, \ldots, 25\})$

```
>> c = chan_fromklmap(lambda x: binomial(25, 20/x),
    fish_dom, catch_dom)
>> catch = c >> prior # forward state transformation
```

State transformation＞＞gives（Bayesian）prediction

Predict probability of catching n marked fish

A discrete probability distribution on $\{0, \ldots, 25\}$, assuming the prior uniform distribution on [25,300].

Page 36 of $39 \begin{aligned} & \text { Jacobs } \\ & \text { Tool support for effectus probability } \\ & \text { 2017 }\end{aligned}$ Effectus Theory

Catch another 25 fish, now find 8 marked
Update the earlier posterior state post_5 once again:

```
>>> obs_8 = point_pred(8,catch_dom)
>>> post_5_8 = post_5 / (c << obs_8)
>>> post_5_8.plot()
```


Catch 25 fish, find 5 marked: reason backwards
Define 'observe 5' predicate, then transform this predicate \& condition:

```
>> obs_5 = point_pred(5,catch_dom)
>> post_5 = prior / (c << obs_5)
>>> post_5.plot()
```


The expected number of fish is 139

```
Page 37 of 39 Jacobs 26 June 2017 Effectus Theory
```

iCIS \| Digital Security Radboud University

Where we are, so far

Background

A crash course on effect algebras and effect modules

Effectuses

Basic results in effectus theory

Tool support for effectus probability

Conclusions

Main points

- Effectus is a basic notion of the "Nijmegen school"
- weak axioms, but suprisingly rich (logical) structure
- Different primitives:
- Oxford: tensors \otimes and interaction, after Schrödinger
- Nijmegen: coproducts + and logic, after von Neumann

There is "stronger entanglement of research"

- Basics of effectus theory is now well-developed:
- state-and-effect triangles
- commutative (probabilistic) and Boolean subcases
- quotient and comprehension chains
- conditioning (update,revision) of states with predicates
- square root axiom, with pure maps and daggers
- EfProb tool support for discrete/continuous/quantum channel-based probability calculations
- Is effectus theory the 'new topos theory'? Far too early to say!

